Wen-lu Zhu

When Wen-lu Zhu picks up a rock, she sees more than a static object. Each rock was shaped by powerful forces deep in the Earth’s crust and mantle. For her, these rocks offer a window through which she can examine how the Earth works. They provide insights into the eruption of volcanoes, the causes of earthquakes, or the formation of hydrothermal vents. But in order to open this window, she must bring the rock into the laboratory and examine its physical characteristics or mechanics.

X-ray synchrotron image of an intact Darley Dale sandstone sample. The lighted area represents pore space.

Many factors may play a role in shaping a rock while it is within the Earth’s crust or mantle. Extreme temperatures, pressure and, stress may reshape or deform it. Chemical reactions with surrounding fluids may alter its composition. All of these processes take place well beyond our reach. So instead of trying to unzip the crust and peering inside, Wen-lu and her colleagues recreate in the laboratory the environment that the rocks experienced. They raise the temperature, increase the pressure, or twist the rock then examine how each of these factors affects its structure. By testing how each one of these factors affects the rock, Wen-lu and her colleagues can determine the dominant forces that shape it.

When Wen-lu arrived at the Woods Hole Oceanographic Institution, she turned her attention to the rocks found around hydrothermal vents.

Wen-lu working in her laboratory.

These vents form along the volcanically active mid-ocean ridge on the deep ocean floor. Seawater seeps down through cracks in the seafloor, is heated by magma far below, then rises back up and spews out of vents. As the seawater heats up, it reacts with the rocks in the ocean crust. These reactions alter the chemistry of the hydrothermal fluid which in turn affects the chemistry of the entire ocean. Wen-lu is attempting to find out how the structure of these rocks affects these chemical reactions with the hydrothermal fluid.

One of the most important structural components of the rocks she is studying is their pore geometry. The rocks contain pores or holes in them which can be large enough to see or can be microscopic. If the pores are interconnected, the hydrothermal fluid can pass right through the rock. The greater the porosity (percentage of empty space in the rock), the more hydrothermal fluid can pass through and the more material the fluid picks up and deposits in the rocks.

Stereo 3-D microstructure of a deformed Darley Dale sandstone sample. Lighter area represents pores.

To determine the porosity, Wen-lu and her colleagues construct an image of the rock’s internal structure using a CT scan (x-ray computed tomography). This device is similar to the ones hospitals use to find tumors and bone fractures. Another important physical parameter that tells how fast a fluid can flow through a rock is the rock's permeability. They use a gas flow meter to measure the rocks permeability or speed in which material can flow through the rock. Currently they are examining the structure of the rocks at room temperature and at one atmosphere of pressure. In the future, they plan to heat the rock up to 350°C, which is the temperature the rocks experience in the hydrothermal vents.

Wen-lu Zhu

  • Associate Scientist, Department of Geology and Geophysics
  • Woods Hole Oceanographic Institution

More about Wen-lu

More Remarkable Careers

Melanie Holland

Melanie Holland studies the microbes that thrive in scalding temperatures surrounding hydrothermal vents. These amazing organisms not only reveal important information about the vent communities, they may also provide insights into the origin of life on Earth and the possible existence of life on other planets.

View full profile …

Dawn Wright
  • Dawn Wright
  • Associate Scientist, Geography/Marine Geology

Master Lego-constructor and former bicycle-racer Dawn Wright has immersed herself in two disciplines. As a geologist, she is studying the cracks that form in the seafloor along the mid-ocean ridge. As a geographer, she is developing software that oceanographers are using to interpret seafloor data.

View full profile …

Lauren Mullineaux

Lauren Mullineaux’s research group studies a side of benthic organisms (animals that live on the seafloor) that until recently has received little attention.

View full profile …

Jo Griffith
  • Jo Griffith
  • Principal Illustrator, Scientific and Oceanographic Data

Technical illustrator Jo Griffith hasn’t picked up a pen in over five years. Instead she uses a variety of computer programs to create graphs, maps, and illustrations for researchers.

View full profile …

Emily Klein

Emily collects rocks from the deep seafloor. The chemicals that make up the rocks provide clues to how the oceanic crust is built.

View full profile …

Ashanti Pyrtle

Ashanti Pyrtle studies the fate of radioactive material that enters rivers, lakes, and oceans. She also advises minority science students on how to navigate through graduate school and prepare for a career afterwards.

View full profile …

Debby Ramsey

As Third Engineer onboard the Research Vessel Thomas G. Thompson, Debby Ramsey helps keep all of the equipment that has moving parts running smoothly.

View full profile …

Maya Tolstoy

Marine seismologist Maya Tolstoy helps find active volcanoes on the seafloor by listening for their eruptions.

View full profile …

Rose Dufour
  • Rose Dufour
  • Ship Scheduler and Clearance Officer, Ship Operations and Marine Technical Support

Rose Dufour and her job-share partner Elizabeth Brenner create the schedules for four research ships. The challenge is to keep the scientists, funding agencies, and foreign governments happy.

View full profile …

Claudia Benitez-Nelson

Claudia Benitez-Nelson uses radioactive isotopes to study the complex world of nutrient cycling in the oceans.

View full profile …

Kathryn Kelly

Kathryn Kelly studies how changing ocean currents affect the climate. And she does all of her research from the comfort of her office.

View full profile …

Amy Bower
  • Amy Bower
  • Associate Scientist, Physical Oceanography

Amy studies the interactions between ocean currents and climate. These interactions are very complex.

View full profile …

Kathryn Gillis

Kathryn Gillis dives to rifts in the seafloor that are as deep as six kilometers to learn about the processes taking place within the ocean crust.

View full profile …

Margaret Leinen

As a scientist, Margaret Leinen studied sediments that have accumulated on the ocean floor. Now as the Assistant Director of Geosciences at the National Science Foundation, she oversees programs in Earth, Atmosphere, Ocean, and Environmental Sciences. She is also working on initiatives to bring more women and minorities into these fields.

View full profile …